[스택/큐] 다리를 지나는 트럭

[스택/큐] 다리를 지나는 트럭

트럭 여러 대가 강을 가로지르는 일차선 다리를 정해진 순으로 건너려 합니다. 모든 트럭이 다리를 건너려면 최소 몇 초가 걸리는지 알아내야 합니다. 다리에는 트럭이 최대 bridge_length대 올라갈 수 있으며, 다리는 weight 이하까지의 무게를 견딜 수 있습니다. 단, 다리에 완전히 오르지 않은 트럭의 무게는 무시합니다.

예를 들어, 트럭 2대가 올라갈 수 있고 무게를 10kg까지 견디는 다리가 있습니다. 무게가 [7, 4, 5, 6]kg인 트럭이 순서대로 최단 시간 안에 다리를 건너려면 다음과 같이 건너야 합니다.

경과 시간 다리를 지난 트럭 다리를 건너는 트럭 대기 트럭
0 [] [] [7,4,5,6]
1~2 [] [7] [4,5,6]
3 [7] [4] [5,6]
4 [7] [4,5] [6]
5 [7,4] [5] [6]
6~7 [7,4,5] [6] []
8 [7,4,5,6] [] []

따라서, 모든 트럭이 다리를 지나려면 최소 8초가 걸립니다.

solution 함수의 매개변수로 다리에 올라갈 수 있는 트럭 수 bridge_length, 다리가 견딜 수 있는 무게 weight, 트럭 별 무게 truck_weights가 주어집니다. 이때 모든 트럭이 다리를 건너려면 최소 몇 초가 걸리는지 return 하도록 solution 함수를 완성하세요.

https://school.programmers.co.kr/learn/courses/30/lessons/42583


import java.util.*;

class Solution {
    public int solution(int bridge_length, int weight, int[] truck_weights) {
        int answer = 0;
        
        LinkedList<Integer> list = new LinkedList<>();
        
        for(int i = 0;i<truck_weights.length;i++) {
            list.add(truck_weights[i]);
        }
      
        
        LinkedList<Integer> end = new LinkedList<>();
        
        Integer[] brgTemp = new Integer[bridge_length];
        Arrays.fill(brgTemp,0);
        LinkedList<Integer> bridge = new LinkedList<>(List.of(brgTemp));
        int bridgeTruckWeight=0;
        
        while (end.size() != truck_weights.length) {
            answer++;
            int goalTruck = bridge.remove(bridge.size()-1);
            if(goalTruck != 0) {
                bridgeTruckWeight -= goalTruck;
                end.add(goalTruck);
            }
            
            bridge.push(0);
            
            if(list.isEmpty()) {
                continue;
            }
            
            // 가장 무거운 차량 뽑기
            int maxTruck = list.peekLast();    
            
            if (bridgeTruckWeight + maxTruck <= weight) {
                int currentMaxTruck = list.pollLast();
                bridge.set(0, currentMaxTruck);
                bridgeTruckWeight += currentMaxTruck;
                
                continue;
            }
            
            if(list.isEmpty()) {
                continue;
            }
            
        }
        
        
        return answer;
    }
}